Controlling the Speed of Rowan's Docking

by Corin Wagen · Sept 22, 2025

A painting of the canal in front of the Venetian arsenal

View of the Entrance to the Venetian Arsenal, by Canaletto (1732)

Rowan uses AutoDock Vina to run docking (with an exhaustiveness of 8 by default). Through Rowan’s Python API there are three readily accessible options that can be selected to tune how docking is run:

By default, docking calculations run through the web interface have all of these options enabled, which makes docking calculations more thorough but slower. This is ideal for cases in late-stage optimization when a thorough assessment of a given compound is desired, but makes Rowan’s docking too slow for many high-throughput screening contexts; for virtual screens it often makes sense to disable some or all of these steps.

To illustrate the effects that each of these settings can have, we ran a bunch of docking calculations. We selected PDE4 as our protein target (based on a sanitized 1XM6 structure) and docked the known PDE4 inhibitor rolipram against it.

Here’s the script we used, which takes a local sanitized PDB file with a known pocket and iteratively tries different combination of settings:

from pathlib import Path
import rowan
from rowan.protein import upload_protein
import stjames

rowan.api_key = "rowan-sk-your-secret-key-here"

protein = upload_protein("PDE4 cleaned from 1XM6", Path("pde4.pdb"))

pocket_specification = [[46.37, 1.64, -9.88], [19.2, 13.37, 17.72]]

ligand_smiles = "COc1ccc([C@@H]2CNC(=O)C2)cc1OC1CCCC1"
ligand = stjames.Molecule.from_smiles(ligand_smiles)

def run_docking(
    do_optimization: bool,
    do_conformer_search: bool,
    do_pose_refinement: bool,
) -> tuple[int, int, float, float]:
	"""
	Run a docking calculation through Rowan and return various metrics.
	"""
    workflow = rowan.submit_docking_workflow(
        protein,
        pocket_specification,
        initial_molecule=ligand,
        do_csearch=do_conformer_search,
        do_optimization=do_optimization,
        do_pose_refinement=do_pose_refinement,
    )

    workflow.wait_for_result()
    workflow.fetch_latest(in_place=True)

    num_conformers = len(workflow.data["conformers"])
    num_poses = len(workflow.data["scores"])
    best_score = min(s["score"] for s in workflow.data["scores"])
    total_time_s = workflow.elapsed

    return num_conformers, num_poses, best_score, total_time_s

for do_optimization in [True, False]:
    for do_conformer_search in [True, False]:
        for do_pose_refinement in [True, False]:
            num_confs, num_poses, best_score, time_s = run_docking(
              do_optimization,
              do_conformer_search,
              do_pose_refinement
            )

            print("Docking run finished:")
            print(f"\tOptimization? {do_optimization}")
            print(f"\tConformer search? {do_conformer_search}")
            print(f"\tPose refinement? {do_pose_refinement}")
            print(f"\t{num_confs} conformers, {num_poses} output poses")
            print(f"\tBest score: {best_score:.3f}")
            print(f"\tTotal elapsed time: {time_s:.1f} seconds")

Running the above script gave a clear comparison of each docking method’s performance, which we organized into the below table. (We excluded rows where do_csearch is set to True and do_optimization is False because optimization is automatically run in these cases—a message is printed in the logfile when this happens.) There are obviously slight run-to-run variations in timing and outputs, but we've found that the values shown below are pretty consistent, and that timings generally only vary by a second or two per run.

#Optimization?Conformer search?Pose refinement?ConformersPosesBest ScoreTime (s)
1YesYesYes520-6.842194.1
2YesYesNo519-6.828112.6
3YesNoYes14-6.63029.7
4YesNoNo14-6.63020.2
5NoNoYes14-6.72729.3
6NoNoNo14-6.72717.6

Looking at the above data, a few conclusions are apparent:

The fastest possible settings (row 6) allow a full protein–ligand docking calculation to be run in under 20 seconds, which is quick enough for most high-throughput screening applications.

Banner background image

What to Read Next

Batch Calculations Through Rowan's API

Batch Calculations Through Rowan's API

How to efficiently submit and analyze lots of workflows through Rowan's free Python API.
Dec 10, 2025 · Corin Wagen
Building BioArena: Kat Yenko on Evaluating Scientific AI Agents

Building BioArena: Kat Yenko on Evaluating Scientific AI Agents

Ari interviews Kat Yenko about her vision for BioArena, what led her to get started, and how to evaluate the utility of frontier models for real-world science.
Dec 9, 2025 · Ari Wagen
Automating Organic Synthesis: A Conversation With Daniil Boiko and Andrei Tyrin from onepot

Automating Organic Synthesis: A Conversation With Daniil Boiko and Andrei Tyrin from onepot

Corin talks with Daniil and Andrei about their recent seed round and how they plan to automate all of synthesis.
Dec 5, 2025 · Corin Wagen
Eliminating Imaginary Frequencies

Eliminating Imaginary Frequencies

How to get rid of pesky imaginary frequencies.
Dec 1, 2025 · Corin Wagen
Conformer Deduplication, Clustering, and Analytics

Conformer Deduplication, Clustering, and Analytics

deduplicating conformers with PRISM Pruner; Monte-Carlo-based conformer search; uploading conformer ensembles; clustering conformers to improve efficiency; better analytics on output ensembles
Nov 25, 2025 · Corin Wagen, Ari Wagen, and Jonathon Vandezande
The Multiple-Minimum Monte Carlo Method for Conformer Generation

The Multiple-Minimum Monte Carlo Method for Conformer Generation

Guest blog post from Nick Casetti discussing his new multiple-minimum Monte Carlo method for conformer generation.
Nov 24, 2025 · Nick Casetti
Screening Conformer Ensembles with PRISM Pruner

Screening Conformer Ensembles with PRISM Pruner

Guest blog post from Nicolò Tampellini, discussing efficient pruning of conformational ensembles using RMSD and moment of inertia metrics.
Nov 21, 2025 · Nicolò Tampellini
GPU-Accelerated DFT

GPU-Accelerated DFT

the power of modern GPU hardware; GPU4PySCF on Rowan; pricing changes coming in 2026; an interview with Navvye Anand from Bindwell; using Rowan to develop antibacterial PROTACs
Nov 19, 2025 · Jonathon Vandezande, Ari Wagen, Corin Wagen, and Spencer Schneider
Rowan Research Spotlight: Emilia Taylor

Rowan Research Spotlight: Emilia Taylor

Emilia's work on BacPROTACs and how virtual screening through Rowan can help.
Nov 19, 2025 · Corin Wagen
GPU-Accelerated DFT with GPU4PySCF

GPU-Accelerated DFT with GPU4PySCF

A brief history of GPU-accelerated DFT and a performance analysis of GPU4PySCF, Rowan's newest DFT engine.
Nov 19, 2025 · Jonathon Vandezande