What Ishaan and Vedant Learned This Summer

Typical Street View coverage of La Paz

Antrum Platonicum by Jan Saenredam (after Cornelis Cornelisz van Haarlem)

As the first of our interns wrap up and prepare for the fall semester, we wanted to ask them a few questions to help them reflect on their time at Rowan and share learnings with the world.

Today, both Ishaan and Vedant are concluding their internships with Rowan. We're excited to share more of what they've worked on soon. In the meantime, we hope you enjoy their responses to a few questions:

Ishaan's Answers

What are five things you learned during your internship at Rowan?

  1. Chemistry and biology software packages are annoying to work with and are largely incompatible with each other. Moreover, because they aren't super widely used, LLMs don't do a great job of suggesting good fixes when one runs into library-specific bugs.

  2. Blogs are an awesome source of information for both technical and nontechnical content.

  3. Staying up to date with the literature in a field is really helpful in giving you a clear picture of the field's current state. Transitioning from reading an occasional paper to reading a paper daily feels like being freed from the cave and going outside.

  4. Neural network potentials, as great as they are for small molecule property prediction, do a very poor job of predicting protein–ligand interaction energies. This is even the case for the Meta models trained on the OMol25 dataset. [For more on this, see Ishaan's work benchmarking protein–ligand interaction energies.]

  5. "416" is a Toronto phone number prefix. "816" is Kansas City. A big city in the mountains in South America is probably either La Paz or Quito.

Typical Street View coverage of La Paz

Typical Street View coverage of La Paz

What's one thing you're hoping to learn more about following your time at Rowan?

Definitely improving MD [molecular dynamics] simulations. I think there are a lot of cool ideas in this space that are largely good "in theory" but haven't been implemented effectively for easy usage. I want to work on/study different ways to run, say, mid-length MD simulations (e.g. 40 ns) more quickly than existing approaches.

Ishaan is returning to Brown University this fall, where he's studying applied math, CS, and physics. This summer, he also released a preprint on cavity polaritons.

Vedant's Answers

What are five things you learned during your internship at Rowan?

  1. Applied research in industry requires a faster pace and narrower focus than academic research (no getting nerd sniped).

  2. To work in an interdisciplinary environment with computer scientists, chemists, biologists, etc. you need to be able to both absorb and filter a lot of information at once and be able to explain what you're doing in a way that is understandable (minimize or always define jargon).

  3. Similarly, to give a research talk to a group with varying backgrounds, you should focus on building intuition while not sacrificing rigor, ensuring that everyone can get something out of your talk. It should be informative, succinct, and tailored to the audience.

  4. ML [machine learning] has a lot of promise in scientific fields but is not a solution for every problem (as much as that realization may "pain" me and other ML researchers). Like any tool or framework, context is key.

  5. There's a gap between ML papers reporting new methods and what scientists actually care about. Usefully addressing this gap requires rigorously testing methods, looking at data splitting, benchmarking, and carefully examining any potential data leakage.

What's one thing you're hoping to learn more about following your time at Rowan?

The intersection between the natural sciences (specifically physics/chemistry) and deep learning methods; it seems like there are a lot of interesting problems and that improving my overall scientific understanding would help.

Vedant is returning to Northeastern University this fall, where he's a master's student working on parameter space symmetries in transformers.

Banner background image

What to Read Next

Ion Mobility, Batch Docking, Strain, Flow-Matching Conformer Generation, and MSA

Ion Mobility, Batch Docking, Strain, Flow-Matching Conformer Generation, and MSA

a diverse litany of new features: ion-mobility mass spectrometry; high-throughput docking with QVina; a standalone strain workflow; Lyrebird, a new conformer-generation model; and standalone MSAs
Nov 5, 2025 · Corin Wagen, Ari Wagen, Eli Mann, and Spencer Schneider
Using Securely Generated MSAs to Run Boltz-2 and Chai-1

Using Securely Generated MSAs to Run Boltz-2 and Chai-1

Example scripts showing how Boltz-2 and Chai-1 can be run using MSA data from Rowan's MSA workflow.
Nov 5, 2025 · Spencer Schneider and Ari Wagen
Lyrebird: Molecular Conformer Ensemble Generation

Lyrebird: Molecular Conformer Ensemble Generation

Rowan's new flow-matching conformer-generation model, with benchmarks.
Nov 5, 2025 · Eli Mann
Predicting Ion-Mobility Mass Spectra Through Rowan

Predicting Ion-Mobility Mass Spectra Through Rowan

An introduction to the field, how Rowan's approach works, and where it might be useful.
Nov 5, 2025 · Corin Wagen
BREAKING: BoltzGen Now Live on Rowan

BREAKING: BoltzGen Now Live on Rowan

a new foray into generative protein-binder design; what makes BoltzGen different; experimental validation; democratizing tools; running BoltzGen on Rowan
Oct 27, 2025 · Corin Wagen, Ari Wagen, and Spencer Schneider
The "Charlotte's Web" of Density-Functional Theory

The "Charlotte's Web" of Density-Functional Theory

A layman's guide to cutting your way through the web of DFT functionals, explaining GGAs, mGGAs, hybrids, range-separated hybrids, double hybrids, and dispersion corrections.
Oct 27, 2025 · Jonathon Vandezande
How to Design Protein Binders with BoltzGen

How to Design Protein Binders with BoltzGen

Step-by-step guides on how to run the BoltzGen model locally and through Rowan's computational-chemistry platform.
Oct 27, 2025 · Corin Wagen and Ari Wagen
Pose-Analysis Molecular Dynamics and Non-Aqueous pKa

Pose-Analysis Molecular Dynamics and Non-Aqueous pKa

what to do after docking/co-folding; Rowan's approach to short MD simulations; what's next for SBDD and MD; new ML microscopic pKa models
Oct 23, 2025 · Corin Wagen, Ari Wagen, Eli Mann, and Spencer Schneider
How to Predict pKa

How to Predict pKa

Five different theoretical approaches for acidity modeling and when you should use each one.
Oct 16, 2025 · Corin Wagen
Structure-Based Drug Design Updates

Structure-Based Drug Design Updates

enforcing stereochemistry; refining co-folding poses; running PoseBusters everywhere; computing strain for co-folding; PDB sequence input; 3D visualization of 2D scans
Oct 14, 2025 · Ari Wagen and Corin Wagen