Partnering with Macrocosmos to Accelerate Next-Generation NNP Development

May 1, 2025

Neural network potentials (NNPs) are revolutionizing molecular simulation. Starting today, Rowan is teaming up with Macrocosmos, an open-source AI research lab building on Bittensor, to accelerate the development of the next generation of NNPs through Subnet 25 - Mainframe.

From Macrocosmos' documentation on Subnet 25 - Mainframe:

Mainframe is a decentralised science subnet on Bittensor. It provides computing power and community talent to solve scientific problems.

Subnet 25 currently tackles decentalized protein folding using molecular dynamics (MD) a method for simulating the physical movements of atoms and molecules.

Our collaboration brings Bittensor closer to cutting-edge research in drug discovery and materials science. We look forward to working with the Macrocosmos team to add new capabilities to Mainframe.

In our newly released preprint "Egret-1: Pretrained Neural Network Potentials for Efficient and Accurate Bioorganic Simulation," we present a new family of open-source ML models for high-accuracy bioorganic simulations. One key insight from the paper is that the next generation of models will need a lot more high-quality data generated via density-functional theory (DFT). From the paper:

In particular, we anticipate that a combination of improved dataset scale and quality, more expressive architectures, and performance optimization will make it possible to achieve significantly improved accuracy, speed, and generality, which we expect to have a substantial impact on discovery across the chemical sciences.

Working with Macrocosmos and Mainframe will let us use the decentralized computing power of the Bittensor network to dynamically generate the data we need to train the next generation of NNPs.

Bittensor is an ideal partner for this ambitious scientific project. We're very excited to be working with Macrocosmos, Subnet 25 - Mainframe, and the community to combine our expertise and push the boundaries of ML-powered molecular simulation forward.

Banner background image

What to Read Next

Using Implicit Solvent With Neural Network Potentials

Using Implicit Solvent With Neural Network Potentials

Modeling polar two-electron reactivity accurately with neural network potentials trained on gas-phase DFT.
Oct 7, 2025 · Corin Wagen
Preparing SMILES for Downstream Applications

Preparing SMILES for Downstream Applications

How to quickly use Rowan to predict the correct protomer and tautomer for a given SMILES.
Oct 3, 2025 · Corin Wagen
Better Search and Filtering

Better Search and Filtering

the problem of too many calculations; new ways to search, filter, and sort; how to access these tools; future directions
Sep 30, 2025 · Ari Wagen and Spencer Schneider
Boltz-2 Constraints, Implicit Solvent for NNPs, and More

Boltz-2 Constraints, Implicit Solvent for NNPs, and More

new terms of service; comparing IRCs and conformer searches; contact and pocket constraints for Boltz-2; MOL2 download; implicit-solvent NNPs; draft workflows; optimizing docking efficiency
Sep 22, 2025 · Corin Wagen, Ari Wagen, Jonathon Vandezande, Eli Mann, and Spencer Schneider
Controlling the Speed of Rowan's Docking

Controlling the Speed of Rowan's Docking

Some notes on how docking can be tuned for different applications.
Sep 22, 2025 · Corin Wagen
Studying Scaling in Electron-Affinity Predictions

Studying Scaling in Electron-Affinity Predictions

Testing low-cost computational methods to see if they get the expected scaling effects right.
Sep 10, 2025 · Corin Wagen
Open-Source Projects We Wish Existed

Open-Source Projects We Wish Existed

The lacunæ we've identified in computational chemistry and suggestions for future work.
Sep 9, 2025 · Corin Wagen, Jonathon Vandezande, Ari Wagen, and Eli Mann
How to Make a Great Open-Source Scientific Project

How to Make a Great Open-Source Scientific Project

Guidelines for building great open-source scientific-software projects.
Sep 9, 2025 · Jonathon Vandezande
ML Models for Aqueous Solubility, NNP-Predicted Redox Potentials, and More

ML Models for Aqueous Solubility, NNP-Predicted Redox Potentials, and More

the promise & peril of solubility prediction; our approach and models; pH-dependent solubility; testing NNPs for redox potentials; benchmarking opt. methods + NNPs; an FSM case study; intern farewell
Sep 5, 2025 · Eli Mann, Corin Wagen, and Ari Wagen
Machine-Learning Methods for pH-Dependent Aqueous-Solubility Prediction

Machine-Learning Methods for pH-Dependent Aqueous-Solubility Prediction

Prediction of aqueous solubility for unseen organic molecules remains an outstanding and important challenge in computational drug design.
Sep 5, 2025 · Elias L. Mann, Corin C. Wagen