Partnering with Macrocosmos to Accelerate Next-Generation NNP Development

May 1, 2025

Neural network potentials (NNPs) are revolutionizing molecular simulation. Starting today, Rowan is teaming up with Macrocosmos, an open-source AI research lab building on Bittensor, to accelerate the development of the next generation of NNPs through Subnet 25 - Mainframe.

From Macrocosmos' documentation on Subnet 25 - Mainframe:

Mainframe is a decentralised science subnet on Bittensor. It provides computing power and community talent to solve scientific problems.

Subnet 25 currently tackles decentalized protein folding using molecular dynamics (MD) a method for simulating the physical movements of atoms and molecules.

Our collaboration brings Bittensor closer to cutting-edge research in drug discovery and materials science. We look forward to working with the Macrocosmos team to add new capabilities to Mainframe.

In our newly released preprint "Egret-1: Pretrained Neural Network Potentials For Efficient and Accurate Bioorganic Simulation," we present a new family of open-source ML models for high-accuracy bioorganic simulations. One key insight from the paper is that the next generation of models will need a lot more high-quality data generated via density-functional theory (DFT). From the paper:

In particular, we anticipate that a combination of improved dataset scale and quality, more expressive architectures, and performance optimization will make it possible to achieve significantly improved accuracy, speed, and generality, which we expect to have a substantial impact on discovery across the chemical sciences.

Working with Macrocosmos and Mainframe will let us use the decentralized computing power of the Bittensor network to dynamically generate the data we need to train the next generation of NNPs.

Bittensor is an ideal partner for this ambitious scientific project. We're very excited to be working with Macrocosmos, Subnet 25 - Mainframe, and the community to combine our expertise and push the boundaries of ML-powered molecular simulation forward.

Banner background image

What to Read Next

Partnering with Macrocosmos to Accelerate Next-Generation NNP Development

Partnering with Macrocosmos to Accelerate Next-Generation NNP Development

Starting today, Rowan is teaming up with Macrocosmos to accelerate the development of the next generation of NNPs through Bittensor Subnet 25 - Mainframe.
May 1, 2025 · Ari Wagen
Introducing Egret-1

Introducing Egret-1

trusting computation; speed vs accuracy; Egret-1, Egret-1e, and Egret-1t; benchmarks; speed on CPU and GPU; download Egret-1 or use it through Rowan
Apr 30, 2025 · Eli Mann, Corin Wagen, Jonathon Vandezande, Ari Wagen, and Spencer Schneider
Egret-1: Pretrained Neural Network Potentials For Efficient and Accurate Bioorganic Simulation

Egret-1: Pretrained Neural Network Potentials For Efficient and Accurate Bioorganic Simulation

Here, we present Egret-1, a family of large pre-trained NNPs based on the MACE architecture with general applicability to main-group, organic, and biomolecular chemistry.
Apr 30, 2025 · Elias L. Mann, Corin C. Wagen, Jonathon E. Vandezande, Arien M. Wagen, Spencer C. Schneider
Introducing Egret-1

Introducing Egret-1

Today, we're releasing Egret-1, a family of open-source NNPs for bioorganic simulation.
Apr 30, 2025 · Eli Mann, Corin Wagen, Jonathon Vandezande, Ari Wagen, and Spencer Schneider
Starling: Macroscopic pKa, logD, and Blood–Brain-Barrier Permeability

Starling: Macroscopic pKa, logD, and Blood–Brain-Barrier Permeability

microscopic vs. macroscopic pKa; Uni-pKa and Starling; microstate ensembles; logD and Kp,uu predictions
Apr 25, 2025 · Corin Wagen
Physics-Informed Machine Learning Enables Rapid Macroscopic pKa Prediction

Physics-Informed Machine Learning Enables Rapid Macroscopic pKa Prediction

Here we introduce Starling, a physics-informed neural network based on the Uni-pKa architecture trained to predict per-microstate free energies and compute macroscopic pKa values via thermodynamic ensemble modeling.
Apr 25, 2025 · Corin C. Wagen
Predicting Infrared Spectra and Orb-v3

Predicting Infrared Spectra and Orb-v3

light and its manifold interactions with matter; why IR spectroscopy is useful; predicting IR spectra through Rowan; Orb-v3
Apr 17, 2025 · Ari Wagen, Corin Wagen, and Jonathon Vandezande
What's in a Name?

What's in a Name?

Why our company is named after a tree with no obvious connection to what we do.
Apr 11, 2025 · Corin Wagen and Ari Wagen
2D Scans, More Fukui Options, & Max Concurrency

2D Scans, More Fukui Options, & Max Concurrency

escape from scan-land; making More O'Ferrall–Jencks plots in Rowan; extending Fukui calculations to more levels of theory; managing large numbers of concurrent jobs
Apr 10, 2025 · Corin Wagen, Ari Wagen, Spencer Schneider, and Jonathon Vandezande
Can AI Can Accelerate Scientific Research?

Can AI Can Accelerate Scientific Research?

New research from Aiden Toner-Rodgers at MIT suggests the answer is yes, but with important caveats.
Apr 2, 2025 · Corin Wagen