Rowan Announces $2.1M to Build Machine Learning-Powered Computational Tools for Chemistry

Startup aims to replace expensive, slow, quantum mechanics simulations with inexpensive, fast machine-learned potentials.

BOSTON, Dec. 9, 2024 — Rowan, a company building molecular design and simulation tools for scientists, today announced $2.1 million in pre-seed funding. Investors include Pillar VC, AI Grant, and angel investors.

"Modern algorithms and machine learning models can dramatically accelerate scientific R&D by replacing resource-intensive experiments," said Corin Wagen, PhD, CEO and founder of Rowan. "As Rowan helps more scientists use modern computational techniques, our company will accelerate the speed of scientific progress across drug discovery and materials science."

Rowan makes it possible for any scientist to run modern simulation workflows, not just experts in computational chemistry. Users can design, simulate, and analyze molecules and materials through the company's web platform. Rowan's capabilities include:

"Rowan is now my first port of call for QM modeling," said Lewis Martin, chief scientific officer of OpenBench. "The attention paid to pragmatic and benchmarked methods means the software suite is practical to incorporate into our workflows."

"Today, biotech and pharma companies can invest hundreds of millions of dollars developing a single drug, and conventional simulations struggle to accelerate this process," said Tony Kulesa, partner at Pillar VC. "Rowan is building the next generation of powerful computational tools to save these companies an extraordinary amount of time and money as they advance their research."

About Rowan
Rowan is building machine learning-powered computational tools to accelerate chemical innovation. To learn more, visit rowansci.com.

Banner background image

What to Read Next

MSA, Protein–Ligand Binding Affinity Exploration, and Stereochemistry

MSA, Protein–Ligand Binding Affinity Exploration, and Stereochemistry

MSA-related occurrences and our incident postmortem; MSA server coming soon; exploring new approaches to binding-affinity prediction; a farewell to interns; a new stereochemistry lab
Aug 22, 2025 · Ari Wagen, Corin Wagen, and Spencer Schneider
Co-Folding Failures, Our Response, and Rowan-Hosted MSA

Co-Folding Failures, Our Response, and Rowan-Hosted MSA

A narrative account of our response to a sudden rise in protein–ligand co-folding failures.
Aug 22, 2025 · Ari Wagen
Exploring Protein–Ligand Binding-Affinity Prediction

Exploring Protein–Ligand Binding-Affinity Prediction

Trying a few modern ML-based approaches for predicting protein–ligand binding affinity.
Aug 20, 2025 · Ishaan Ganti
What Ishaan and Vedant Learned This Summer

What Ishaan and Vedant Learned This Summer

Reflections from two of our interns on their time at Rowan and a few things they learned.
Aug 15, 2025 · Ishaan Ganti and Vedant Nilabh
Projects: Organization, Sharing, and Saving Structures

Projects: Organization, Sharing, and Saving Structures

better organization through projects; saving structures; usage tracking; new conf. search features; second-order SCF; ex. API repo; SMILES imports; a guide to the pKa-perplexed; our inaugural demo day
Aug 14, 2025 · Ari Wagen, Spencer Schneider, Corin Wagen, and Jonathon Vandezande
Macroscopic and Microscopic pKa

Macroscopic and Microscopic pKa

Two different ways to calculate acidity, what they mean, and when to use them.
Aug 11, 2025 · Corin Wagen
Computational Chemistry in the Classroom

Computational Chemistry in the Classroom

chemical modeling; Diels–Alder; call for more labs
Jul 31, 2025 · Jonathon Vandezande and Isaiah Sippel
Modeling Thia-Michael Reactions

Modeling Thia-Michael Reactions

In which the addition of a thiolate to an enone proves to be unexpectedly difficult to model.
Jul 25, 2025 · Corin Wagen
API v2, New BDE Methods, MCP, And More

API v2, New BDE Methods, MCP, And More

new API philosophy; streamlined interfaces for workflows; using NNPs and g-xTB to predict bond strength; an MCP server; .sdf files; benchmarking protein–ligand interactions; Diels–Alder visualizations
Jul 21, 2025 · Spencer Schneider, Corin Wagen, Ari Wagen, Jonathon Vandezande, Ishaan Ganti, and Isaiah Sippel
ExpBDE54: A Slim Experimental Benchmark for Exploring the Pareto Frontier of Bond-Dissociation-Enthalpy-Prediction Methods

ExpBDE54: A Slim Experimental Benchmark for Exploring the Pareto Frontier of Bond-Dissociation-Enthalpy-Prediction Methods

ExpBDE54 is a benchmark dataset of experimental homolytic bond-dissociation enthalpies (BDEs) for 54 small molecules, used for benchmarking DFT, semiempirical methods, and NNPs.
Jul 17, 2025 · Jonathon E. Vandezande, Corin C. Wagen