Introducing Egret-1

by Eli Mann, Corin Wagen, Jonathon Vandezande, Ari Wagen, and Spencer Schneider · Apr 30, 2025

Today, we're releasing Egret-1, a family of open-source NNPs for bioorganic simulation.

Visual abstract showcasing Egret-1's capabilities in bioorganic simulation

Over the past two years of building Rowan, we've probably talked to over a thousand chemists about how they wish they could be using computation. One theme that stands out is that scientists want to be able to trust their results. Historically, there's been no good way to quickly run simulations that weren't largely incorrect—low-cost computational methods have been around forever, but they often behave more like random-number generators than trusted scientific tools.

In theory, neural network potentials (NNPs) can enable fast and accurate chemical simulation, but previous generations of NNPs haven't been as reliable as the legacy quantum-mechanics-based algorithms that chemists are used to—so the simulations are very fast, but chemists still have to double-check the results with quantum chemistry.

Egret-1 changes this. On many relevant benchmarks, our models match or exceed the accuracy of quantum-mechanics-based simulations while running orders-of-magnitude faster. With Egret-1, scientists can quickly get trustworthy results from computation to guide their work.

Training on purpose-built datasets

The Egret-1 family of NNPs comprises three pretrained models built for different use cases:

We've benchmarked the Egret-1 models on a wide variety of common simulation tasks, and found that in many cases they exceed the accuracy of conventional quantum-chemical methods—meaning that Egret-1 is both faster and more accurate than the previous state-of-the-art. (For a full description of our training and benchmarking work, we've published a preprint on arXiv.)

Here's three particularly exciting results—in all cases, lower numbers are better.

Egret-1's performance on the ROT34 rotational constant benchmark

Quantum-mechanical (grey), existing low-cost and NNP (white), and Egret-1 (green) performance on the ROT34 rotational constant benchmark

Egret-1's performance on the Folmsbee conformer-ranking benchmark

Quantum-mechanical (grey), existing low-cost and NNP (white), and Egret-1 (green) performance on the Folmsbee conformer-ranking benchmark

Egret-1's performance on the Wiggle150 strained-conformer benchmark

Quantum-mechanical (grey), existing low-cost and NNP (white), and Egret-1 (green) performance on the Wiggle150 strained-conformer benchmark

Chemical accuracy hundreds of times faster

Even on CPUs, the Egret-1 models are far faster than quantum chemistry. A single energy calculation on the macrocyclic drug rapamycin takes almost 15 minutes with a low-cost quantum-chemical method, while the same calculation takes less than two seconds with Egret-1:

Egret-1 is much faster than DFT at computing the energy of a macrocyclic molecule, rapamycin

For further speed accelerations, the Egret-1 models can also be run on CUDA-enabled GPUs. On an NVIDIA H100, Egret-1 can optimize an all-atom structure of insulin in less than three minutes:

A small protein, human insulin, optimized with the Egret-1 model

How to use Egret-1

We're releasing the Egret-1 models under an open-source MIT license to make it easy to build atop our work. The compiled models can be downloaded from GitHub, and are compatible with the Atomic Simulation Environment. If you're developing with the Egret-1 models, be sure to join the Rowan Discord server to connect with our team.

You can also use Egret-1 through the Rowan computational-chemistry platform. The Egret-1 models can be used for conformer searches, 1D- and 2D-scans, transition states, and more. Make a Rowan account to start running Egret-1 calculations for free today!

What's next

These models have some limitations. Egret-1 is limited to simulating neutral closed-shell structures, supports only a subset of the periodic table, fails to fully learn complex non-covalent interactions, and cannot yet account for solvent effects. We also expect that real-world testing of Egret-1 will find lots of strange and incorrect behaviors we haven't found yet. We plan to address all these limitations with future generations of models, and continue training, scaling and improving general-purpose models for accurate simulation of molecules and materials.

Banner background image

What to Read Next

Partnering with Macrocosmos to Accelerate Next-Generation NNP Development

Partnering with Macrocosmos to Accelerate Next-Generation NNP Development

Starting today, Rowan is teaming up with Macrocosmos to accelerate the development of the next generation of NNPs through Bittensor Subnet 25 - Mainframe.
May 1, 2025 · Ari Wagen
Introducing Egret-1

Introducing Egret-1

trusting computation; speed vs accuracy; Egret-1, Egret-1e, and Egret-1t; benchmarks; speed on CPU and GPU; download Egret-1 or use it through Rowan
Apr 30, 2025 · Eli Mann, Corin Wagen, Jonathon Vandezande, Ari Wagen, and Spencer Schneider
Egret-1: Pretrained Neural Network Potentials For Efficient and Accurate Bioorganic Simulation

Egret-1: Pretrained Neural Network Potentials For Efficient and Accurate Bioorganic Simulation

Here, we present Egret-1, a family of large pre-trained NNPs based on the MACE architecture with general applicability to main-group, organic, and biomolecular chemistry.
Apr 30, 2025 · Elias L. Mann, Corin C. Wagen, Jonathon E. Vandezande, Arien M. Wagen, Spencer C. Schneider
Introducing Egret-1

Introducing Egret-1

Today, we're releasing Egret-1, a family of open-source NNPs for bioorganic simulation.
Apr 30, 2025 · Eli Mann, Corin Wagen, Jonathon Vandezande, Ari Wagen, and Spencer Schneider
Starling: Macroscopic pKa, logD, and Blood–Brain-Barrier Permeability

Starling: Macroscopic pKa, logD, and Blood–Brain-Barrier Permeability

microscopic vs. macroscopic pKa; Uni-pKa and Starling; microstate ensembles; logD and Kp,uu predictions
Apr 25, 2025 · Corin Wagen
Physics-Informed Machine Learning Enables Rapid Macroscopic pKa Prediction

Physics-Informed Machine Learning Enables Rapid Macroscopic pKa Prediction

Here we introduce Starling, a physics-informed neural network based on the Uni-pKa architecture trained to predict per-microstate free energies and compute macroscopic pKa values via thermodynamic ensemble modeling.
Apr 25, 2025 · Corin C. Wagen
Predicting Infrared Spectra and Orb-v3

Predicting Infrared Spectra and Orb-v3

light and its manifold interactions with matter; why IR spectroscopy is useful; predicting IR spectra through Rowan; Orb-v3
Apr 17, 2025 · Ari Wagen, Corin Wagen, and Jonathon Vandezande
What's in a Name?

What's in a Name?

Why our company is named after a tree with no obvious connection to what we do.
Apr 11, 2025 · Corin Wagen and Ari Wagen
2D Scans, More Fukui Options, & Max Concurrency

2D Scans, More Fukui Options, & Max Concurrency

escape from scan-land; making More O'Ferrall–Jencks plots in Rowan; extending Fukui calculations to more levels of theory; managing large numbers of concurrent jobs
Apr 10, 2025 · Corin Wagen, Ari Wagen, Spencer Schneider, and Jonathon Vandezande
Can AI Can Accelerate Scientific Research?

Can AI Can Accelerate Scientific Research?

New research from Aiden Toner-Rodgers at MIT suggests the answer is yes, but with important caveats.
Apr 2, 2025 · Corin Wagen