Modeling Addition and Substitution Reactions

by Milca Pierre and Ari Wagen · Mar 20, 2025

This blog was written with friend of Rowan Milca Pierre. Milca is an undergraduate studying chemistry at the University of Massachusetts Lowell.

In this blog post, we'll be looking at an exercise from The Molecular Modeling Workbook for Organic Chemistry by Warren J. Hehre, Alan J. Shusterman, and Janet E. Nelson (Internet Archive, Amazon). Exercise 1 of chapter 13 looks at addition and substitution reactions, asking:

Unsaturated hydrocarbons undergo a variety of reactions. Experimentally, alkenes & alkynes undergo addition reactions whereas aromatic molecules, such as benzene, undergo substitution reactions instead. Why?

To answer this question, the workbook directs us to calculate the thermodynamics of each reaction. We'll be looking at two different sets of products (cyclohexane and benzene) and calculating the energy of the addition of bromine and corresponding substitution reaction for each.

Our goal is to determine which reactions are exothermic, which are endothermic, and by how much.

Figure 1: Addition and substitution reactions of cyclohexene and benzene with Br2

Figure 1: Addition and substitution reactions of cyclohexene and benzene with Br2

To quickly explore the thermodynamics of these reactions, we'll calculate the energy of each set of reactants and products using the AIMNet2 (ωB97M-D3) level of theory.

Cyclohexene + Br2

Here are the involved Rowan calculations:

Running these optimizations and plotting the thermodynamic change using Rowan's graph builder utility shows us that, although both the addition and substitution reactions are exothermic, the addition reaction is more exothermic. The addition reaction is, therefore, thermodynamically favored, accounting for the observation that "alkenes & alkynes undergo addition reactions."

Figure 2: Thermodynamics of the cyclohexene + Br2 addition and substitution reactions (transition states not modeled)

Figure 2: Thermodynamics of the cyclohexene + Br2 addition and substitution reactions (transition states not modeled)

Benzene + Br2

Here are the involved Rowan calculations:

The results of these calculations show that the addition reaction is endothermic, while the substitution reaction is exothermic. This means that the substitution reaction is thermodynamically favored, explaining the observation that "aromatic molecules, such as benzene, undergo substitution reactions."

Figure 3: Thermodynamics of the benzene + Br2 addition and substitution reactions (transition states not modeled)

Figure 3: Thermodynamics of the benzene + Br2 addition and substitution reactions (transition states not modeled)

To model these reactions' kinetics and predict which pathways would be kinetically favored, we would need to find and optimize each involved transition state. This would be a research project too large for a single blog post—these reactions are very solvent-dependent, may directly involve multiple solvent molecules or catalysts, and the transition-state structures are hard to find. We encourage the interested reader to see other sources looking at these reactions, including:

Figure 4: Computed transition-state structures of the benzene + Br2 substitution and addition reactions. Reproduced from figure 2 in Kong et. al (2011).

Figure 4: Computed transition-state structures of the benzene + Br2 substitution and addition reactions. Reproduced from figure 2 in Kong et. al (2011).

If you're interested in using Rowan to model your own reactions, you can do so through Rowan's web platform (it's free to make an account and get started). Happy computing!

Banner background image

What to Read Next

Modeling Addition and Substitution Reactions

Modeling Addition and Substitution Reactions

Modeling addition and substition reaction thermodynamics for cyclohexane and benzene with diatomic bromine.
Mar 20, 2025 · Milca Pierre and Ari Wagen
Protein–Ligand Docking

Protein–Ligand Docking

critical contemplation of the merits and demerits of docking; unphysical poses and how to find them; machine learning offers a pragmatic solution; running docking on Rowan; future protein aspirations
Mar 14, 2025 · Ari Wagen, Corin Wagen, and Spencer Schneider
The Ford Taurus of Computer-Assisted Drug Design

The Ford Taurus of Computer-Assisted Drug Design

Responding to some recent remarks about Schrödinger.
Mar 10, 2025 · Corin Wagen
2D Structure Drawing

2D Structure Drawing

dimensionality & information content of representations; integrating a 2D editor into Rowan; robust interdimensional interfacing
Mar 6, 2025 · Ari Wagen
Rowan Research Spotlight: An Kitamura and Jake Evans

Rowan Research Spotlight: An Kitamura and Jake Evans

How Rowan helps Northwestern researchers discover better battery materials and capture carbon dioxide.
Mar 4, 2025 · Corin Wagen
Predicting Solubility, Google Sign-in, and User Spotlights

Predicting Solubility, Google Sign-in, and User Spotlights

different approaches to solubility prediction; Rowan's solubility workflow; sign in with Google, vox populi vox dei; a chance to be featured on our blog
Feb 25, 2025 · Ari Wagen, Jonathon Vandezande, Spencer Schneider, and Corin Wagen
The Evolution of Solubility Prediction Methods

The Evolution of Solubility Prediction Methods

Comparing Hansen and Hildebrand solubility parameters to machine-learning methods for solubility prediction.
Feb 25, 2025 · Jonathon Vandezande
Hydrogen-Bond-Basicity Predictions for Scaffold Hopping in PDE2A Inhibitors

Hydrogen-Bond-Basicity Predictions for Scaffold Hopping in PDE2A Inhibitors

How new computational workflows can make it possible to design complex modifications to heterocyclic cores.
Feb 14, 2025 · Corin Wagen
Intrinsic Reaction Coordinates

Intrinsic Reaction Coordinates

expanding Rowan's reaction modeling toolkit; verifying transition states; reaction mechanism insights
Feb 6, 2025 · Jonathon Vandezande and Ari Wagen
Reactions from the Bottom Up

Reactions from the Bottom Up

Building up an understanding of how energy barriers and the potential energy surface affect the rate of a reaction.
Feb 4, 2025 · Jonathon Vandezande