Modeling Addition and Substitution Reactions

by Milca Pierre and Ari Wagen · Mar 20, 2025

This blog was written with friend of Rowan Milca Pierre. Milca is an undergraduate studying chemistry at the University of Massachusetts Lowell.

In this blog post, we'll be looking at an exercise from The Molecular Modeling Workbook for Organic Chemistry by Warren J. Hehre, Alan J. Shusterman, and Janet E. Nelson (Internet Archive, Amazon). Exercise 1 of chapter 13 looks at addition and substitution reactions, asking:

Unsaturated hydrocarbons undergo a variety of reactions. Experimentally, alkenes & alkynes undergo addition reactions whereas aromatic molecules, such as benzene, undergo substitution reactions instead. Why?

To answer this question, the workbook directs us to calculate the thermodynamics of each reaction. We'll be looking at two different sets of products (cyclohexane and benzene) and calculating the energy of the addition of bromine and corresponding substitution reaction for each.

Our goal is to determine which reactions are exothermic, which are endothermic, and by how much.

Figure 1: Addition and substitution reactions of cyclohexene and benzene with Br2

Figure 1: Addition and substitution reactions of cyclohexene and benzene with Br2

To quickly explore the thermodynamics of these reactions, we'll calculate the energy of each set of reactants and products using the AIMNet2 (ωB97M-D3) level of theory.

Cyclohexene + Br2

Here are the involved Rowan calculations:

Running these optimizations and plotting the thermodynamic change using Rowan's graph builder utility shows us that, although both the addition and substitution reactions are exothermic, the addition reaction is more exothermic. The addition reaction is, therefore, thermodynamically favored, accounting for the observation that "alkenes & alkynes undergo addition reactions."

Figure 2: Thermodynamics of the cyclohexene + Br2 addition and substitution reactions (transition states not modeled)

Figure 2: Thermodynamics of the cyclohexene + Br2 addition and substitution reactions (transition states not modeled)

Benzene + Br2

Here are the involved Rowan calculations:

The results of these calculations show that the addition reaction is endothermic, while the substitution reaction is exothermic. This means that the substitution reaction is thermodynamically favored, explaining the observation that "aromatic molecules, such as benzene, undergo substitution reactions."

Figure 3: Thermodynamics of the benzene + Br2 addition and substitution reactions (transition states not modeled)

Figure 3: Thermodynamics of the benzene + Br2 addition and substitution reactions (transition states not modeled)

To model these reactions' kinetics and predict which pathways would be kinetically favored, we would need to find and optimize each involved transition state. This would be a research project too large for a single blog post—these reactions are very solvent-dependent, may directly involve multiple solvent molecules or catalysts, and the transition-state structures are hard to find. We encourage the interested reader to see other sources looking at these reactions, including:

Figure 4: Computed transition-state structures of the benzene + Br2 substitution and addition reactions. Reproduced from figure 2 in Kong et. al (2011).

Figure 4: Computed transition-state structures of the benzene + Br2 substitution and addition reactions. Reproduced from figure 2 in Kong et. al (2011).

If you're interested in using Rowan to model your own reactions, you can do so through Rowan's web platform (it's free to make an account and get started). Happy computing!

Banner background image

What to Read Next

Studying Scaling in Electron-Affinity Predictions

Studying Scaling in Electron-Affinity Predictions

Testing low-cost computational methods to see if they get the expected scaling effects right.
Sep 10, 2025 · Corin Wagen
Open-Source Projects We Wish Existed

Open-Source Projects We Wish Existed

The lacunæ we've identified in computational chemistry and suggestions for future work.
Sep 9, 2025 · Corin Wagen, Jonathon Vandezande, and Ari Wagen
How to Make a Great Open-Source Scientific Project

How to Make a Great Open-Source Scientific Project

Guidelines for building great open-source scientific-software projects.
Sep 9, 2025 · Jonathon Vandezande
ML Models for Aqueous Solubility, NNP-Predicted Redox Potentials, and More

ML Models for Aqueous Solubility, NNP-Predicted Redox Potentials, and More

the promise & peril of solubility prediction; our approach and models; pH-dependent solubility; testing NNPs for redox potentials; benchmarking opt. methods + NNPs; an FSM case study; intern farewell
Sep 5, 2025 · Eli Mann, Corin Wagen, and Ari Wagen
Machine-Learning Methods for pH-Dependent Aqueous-Solubility Prediction

Machine-Learning Methods for pH-Dependent Aqueous-Solubility Prediction

Prediction of aqueous solubility for unseen organic molecules remains an outstanding and important challenge in computational drug design.
Sep 5, 2025 · Elias L. Mann, Corin C. Wagen
What Isaiah and Sawyer Learned This Summer

What Isaiah and Sawyer Learned This Summer

Reflections from our other two interns on their time at Rowan and what they learned.
Sep 5, 2025 · Isaiah Sippel and Sawyer VanZanten
Benchmarking OMol25-Trained Models on Experimental Reduction-Potential and Electron-Affinity Data

Benchmarking OMol25-Trained Models on Experimental Reduction-Potential and Electron-Affinity Data

We evaluate the ability of neural network potentials (NNPs) trained on OMol25 to predict experimental reduction-potential and electron-affinity values for a variety of main-group and organometallic species.
Sep 4, 2025 · Sawyer VanZanten, Corin C. Wagen
Which Optimizer Should You Use With NNPs?

Which Optimizer Should You Use With NNPs?

The results of optimizing 25 drug-like molecules with each combination of four optimizers (Sella, geomeTRIC, and ASE's implementations of FIRE and L-BFGS) and four NNPs (OrbMol, OMol25's eSEN Conserving Small, AIMNet2, and Egret-1) & GFN2-xTB.
Sep 4, 2025 · Ari Wagen and Corin Wagen
Double-Ended TS Search and the Invisible Work of Computer-Assisted Drug Design

Double-Ended TS Search and the Invisible Work of Computer-Assisted Drug Design

finding transition states; the freezing-string method; using Rowan to find cool transition states; discussing drug design
Sep 3, 2025 · Jonathon Vandezande, Ari Wagen, Spencer Schneider, and Corin Wagen
The Invisible Work of Computer-Assisted Drug Design

The Invisible Work of Computer-Assisted Drug Design

Everything that happens before the actual designing of drugs, and how Rowan tries to help.
Aug 28, 2025 · Corin Wagen