The Pentafluorosulfanyl Group (SF5)

The pentafluorosulfanyl group (SF5) is emerging as a noteworthy functional group in medicinal chemistry and materials science. Characterized by its high electronegativity and thermal stability, the SF5 group is gaining attention for its unique properties and potential applications.

Unique Properties of the SF5 Group

The SF5 group consists of a sulfur atom bonded to five fluorine atoms. Here's what pentafluorosulfanylbenzene looks like at the AIMNet2 level of theory:

This structure imparts several distinctive characteristics:

  1. High Electronegativity: Fluorine atoms confer a strong electron-withdrawing effect, making SF5 one of the most electronegative groups. This can significantly alter the electronic properties of molecules.

  2. Thermal and Chemical Stability: The strong S-F bonds render the SF5 group highly resistant to thermal decomposition and chemical reactions, an advantageous property for developing stable compounds.

  3. Lipophilicity and Membrane Permeability: Despite its high electronegativity, the SF5 group can increase the lipophilicity of molecules, enhancing their membrane permeability. This is particularly valuable in drug design, as it can improve bioavailability.

These unique properties make the SF5 group an attractive bioisostere for tert-butyl groups, CF3 groups, and nitro groups, as described in this article by Colby and co-workers.

Applications in Medicinal Chemistry

In medicinal chemistry, the SF5 group is valued for its ability to modulate the pharmacokinetic and pharmacodynamic properties of therapeutic compounds:

  1. Enhancing Drug Efficacy: The addition of an SF5 group can enhance the binding affinity of a drug to its target, potentially increasing efficacy.

  2. Improving Metabolic Stability: The chemical robustness of the SF5 group can help prevent metabolic degradation, extending the drug's effective lifespan in the body.

  3. Altering Distribution and Excretion: Modifying a drug with an SF5 group can influence its distribution within the body and its excretion, optimizing therapeutic effects and minimizing side effects.

Indeed, compounds containing SF5 groups have already demonstrated efficacy in some cases, as shown in this work from Park and co-workers and this work from Ming-Wei Wang, Wei Lu, and co-workers.

Quantum Chemical Insights

Quantum chemical methods can provide deep insights into the behavior of SF5-containing compounds. For instance, computational studies can predict how the introduction of an SF5 group affects molecular geometry, electronic distribution, and reactivity. However, the size and complexity of SF5 make quantum chemical calculations challenging, often necessitating advanced computational methods.

The Role of Rowan

Rowan's cloud-based quantum chemistry platform can play a crucial role in studying SF5-modified molecules. By leveraging machine learning algorithms and efficient computational strategies, Rowan enables researchers to overcome the computational barriers associated with SF5. This makes it possible to accurately model and predict the properties of SF5-containing compounds, facilitating their design and optimization.

Challenges and Future Perspectives

Despite its promising attributes, the SF5 group presents challenges in synthesis and handling due to its reactivity and the difficulty of introducing it into organic molecules. While some progress has been made recently, future research is likely to focus on developing more straightforward synthetic routes and understanding the environmental impact of SF5-containing compounds.

Conclusion

The pentafluorosulfanyl group is a fascinating functional group with significant potential in various fields, especially in drug development. As we continue to explore its applications and overcome its challenges, tools like Rowan will be invaluable in advancing our understanding and utilization of this unique group.

For chemists and researchers interested in exploring the potential of SF5 in their work, Rowan offers the computational power and tools needed to push the boundaries of this exciting field. To start leveraging Rowan's capabilities, visit labs.rowansci.com/create-account and join the community of innovators today.

Banner background image

What to Read Next

BREAKING: BoltzGen Now Live on Rowan

BREAKING: BoltzGen Now Live on Rowan

a new foray into generative protein-binder design; what makes BoltzGen different; experimental validation; democratizing tools; running BoltzGen on Rowan
Oct 27, 2025 · Corin Wagen, Ari Wagen, and Spencer Schneider
The "Charlotte's Web" of Density-Functional Theory

The "Charlotte's Web" of Density-Functional Theory

A layman's guide to cutting your way through the web of DFT functionals, explaining GGAs, mGGAs, hybrids, range-separated hybrids, double hybrids, and dispersion corrections.
Oct 27, 2025 · Jonathon Vandezande
How to Design Protein Binders with BoltzGen

How to Design Protein Binders with BoltzGen

Step-by-step guides on how to run the BoltzGen model locally and through Rowan's computational-chemistry platform.
Oct 27, 2025 · Corin Wagen and Ari Wagen
Pose-Analysis Molecular Dynamics and Non-Aqueous pKa

Pose-Analysis Molecular Dynamics and Non-Aqueous pKa

what to do after docking/co-folding; Rowan's approach to short MD simulations; what's next for SBDD and MD; new ML microscopic pKa models
Oct 23, 2025 · Corin Wagen, Ari Wagen, Eli Mann, and Spencer Schneider
How to Predict pKa

How to Predict pKa

Five different theoretical approaches for acidity modeling and when you should use each one.
Oct 16, 2025 · Corin Wagen
Structure-Based Drug Design Updates

Structure-Based Drug Design Updates

enforcing stereochemistry; refining co-folding poses; running PoseBusters everywhere; computing strain for co-folding; PDB sequence input; 3D visualization of 2D scans
Oct 14, 2025 · Ari Wagen and Corin Wagen
Using Implicit Solvent With Neural Network Potentials

Using Implicit Solvent With Neural Network Potentials

Modeling polar two-electron reactivity accurately with neural network potentials trained on gas-phase DFT.
Oct 7, 2025 · Corin Wagen
Preparing SMILES for Downstream Applications

Preparing SMILES for Downstream Applications

How to quickly use Rowan to predict the correct protomer and tautomer for a given SMILES.
Oct 3, 2025 · Corin Wagen
Better Search and Filtering

Better Search and Filtering

the problem of too many calculations; new ways to search, filter, and sort; how to access these tools; future directions
Sep 30, 2025 · Ari Wagen and Spencer Schneider
Boltz-2 Constraints, Implicit Solvent for NNPs, and More

Boltz-2 Constraints, Implicit Solvent for NNPs, and More

new terms of service; comparing IRCs and conformer searches; contact and pocket constraints for Boltz-2; MOL2 download; implicit-solvent NNPs; draft workflows; optimizing docking efficiency
Sep 22, 2025 · Corin Wagen, Ari Wagen, Jonathon Vandezande, Eli Mann, and Spencer Schneider