Silicon as a Bioisostere for Carbon in Drug Design

In the pursuit of novel therapeutic agents, medicinal chemists often employ the concept of bioisosterism – the replacement of one atom or group in a molecule with another atom or group having similar physical or chemical properties. Silicon, due to its chemical similarity to carbon, has emerged as a fascinating bioisostere in drug design.

Silicon in Medicinal Chemistry

Silicon, located directly below carbon in the periodic table, shares many of its chemical properties but also offers distinct advantages as a bioisostere:

  1. Larger Atomic Radius: Silicon has a larger atomic radius than carbon, which can influence molecular shape and steric interactions.
  2. Increased Lipophilicity: Compounds with silicon may exhibit increased lipophilicity compared to their carbon analogs, potentially enhancing cell membrane permeability. See this case study for an illustration of this effect.
  3. Metabolic Stability: Silicon-containing compounds often show enhanced metabolic stability, which can be beneficial in extending the drug's effective half-life in the body.

Looking at a 3D model makes these differences obvious: the Si–C bonds in silafluofen are substantially longer than C–C bonds, which alters the shape of the molecule and the dihedral preferences of other bonds.

Applications of Silicon Bioisosteres

Silicon in Drug Candidates

Silicon has been used to replace carbon in various functional groups like alcohols, ketones, and amides. These modifications have resulted in compounds with altered pharmacokinetic and pharmacodynamic profiles, sometimes leading to improved therapeutic properties.

Case Studies

Several studies have demonstrated the potential of silicon bioisosteres. For instance, replacing a carbon atom with silicon in certain compounds has resulted in increased potency, selectivity, and metabolic stability. Here's some case studies:

There are lots more papers out there: see for instance this recent review.

Challenges in Silicon Bioisosterism

Despite its potential, the use of silicon as a bioisostere presents challenges:

  1. Synthetic Difficulty: Introducing silicon into organic molecules can be more challenging than traditional carbon-based synthesis. Nevertheless, more and more Si-containing building blocks are now available: see, for instance, this list from Enamine.
  2. Predicting Biological Effects: The effects of silicon substitution on biological systems are not always predictable, necessitating extensive testing.

Computational Chemistry and Silicon Bioisosteres

Advanced computational tools are crucial in predicting the effects of silicon substitution in drug molecules. Quantum chemistry, accessible through platforms like Rowan, can provide insights into the electronic structure, reactivity, and conformational changes resulting from silicon substitution. This predictive power is invaluable in the early stages of drug design. Computational studies also aid in understanding how silicon substitution impacts a drug's metabolism, helping to predict its pharmacokinetic behavior.

Conclusion

The use of silicon as a bioisostere for carbon in drug design is an area of growing interest. While challenges remain, the potential for developing novel therapeutics with improved properties is significant. Continued research, aided by computational chemistry tools like those offered by Rowan, is essential for advancing our understanding and application of silicon bioisosteres in medicinal chemistry.

For researchers interested in exploring the innovative realm of silicon bioisosteres, Rowan provides the computational platform necessary for such advanced studies. Begin your journey in pioneering drug design by creating an account at labs.rowansci.com/create-account.

Banner background image

What to Read Next

Reactions from the Bottom Up

Reactions from the Bottom Up

Building up an understanding of how energy barriers and the potential energy surface affect the rate of a reaction.
Feb 4, 2025 · Jonathon Vandezande
A New RDKit-Native API

A New RDKit-Native API

cultural barriers in science; integrating RDKit with quantum chemistry; Rowan's new API; changes to billing
Jan 31, 2025 · Corin Wagen and Spencer Schneider
Hydrogen-Bond Basicity Prediction Made Easy

Hydrogen-Bond Basicity Prediction Made Easy

not all hydrogen-bond donors are created equal; the pKBHX scale; predicting pKBHX in Rowan; case studies & a preprint
Jan 24, 2025 · Corin Wagen
Efficient Black-Box Prediction of Hydrogen-Bond-Acceptor Strength

Efficient Black-Box Prediction of Hydrogen-Bond-Acceptor Strength

Here, we report a robust black-box workflow for predicting site-specific pKBHX values in organic molecules with minimal computational cost.
Jan 24, 2025 · Corin C. Wagen
Benchmarking NNPs, Orb-v2, and MACE-MP-0

Benchmarking NNPs, Orb-v2, and MACE-MP-0

benchmarking as driver of systematic methodological improvement; our new benchmarking website; new NNPs on Rowan; GPU-based inference coming to more users
Jan 17, 2025 · Ari Wagen
Density-Functional-Theory Functionals Quiz

Density-Functional-Theory Functionals Quiz

Ready to test your knowledge of density-functional-theory functionals in a multiple-choice game of "real or fake"?
Jan 10, 2025 · Jonathon Vandezande
Wiggle150: Benchmarking Density Functionals And Neural Network Potentials On Highly Strained Conformers

Wiggle150: Benchmarking Density Functionals And Neural Network Potentials On Highly Strained Conformers

We introduce Wiggle150, a benchmark comprising 150 highly strained conformations of adenosine, benzylpenicillin, and efavirenz, to validate computational protocols involving non-equilibrium systems and guide the development of new density functionals and neural network potentials.
Jan 8, 2025 · Joseph Gair, Corin Wagen, et al., ChemRxiv
The "Charlotte's Web" of Density-Functional Theory

The "Charlotte's Web" of Density-Functional Theory

A layman's guide to cutting your way through the web of DFT functionals, explaining GGAs, mGGAs, hybrids, range-separated hybrids, double hybrids, and dispersion corrections.
Dec 20, 2024 · Jonathon Vandezande
An Introduction to Neural Network Potentials

An Introduction to Neural Network Potentials

A layman's guide to neural network potentials (NNPs), which can run high-accuracy atomistic simulations many orders of magnitude faster than traditional quantum mechanics (QM) simulations.
Dec 19, 2024 · Ari Wagen
Conventional Chemical Simulation Is Too Slow, and ML Can Help

Conventional Chemical Simulation Is Too Slow, and ML Can Help

Computational chemistry is one of the toughest and most expensive simulation problems in all of science.
Dec 17, 2024 · Corin Wagen