Silicon as a Bioisostere for Carbon in Drug Design

In the pursuit of novel therapeutic agents, medicinal chemists often employ the concept of bioisosterism – the replacement of one atom or group in a molecule with another atom or group having similar physical or chemical properties. Silicon, due to its chemical similarity to carbon, has emerged as a fascinating bioisostere in drug design.

Silicon in Medicinal Chemistry

Silicon, located directly below carbon in the periodic table, shares many of its chemical properties but also offers distinct advantages as a bioisostere:

  1. Larger Atomic Radius: Silicon has a larger atomic radius than carbon, which can influence molecular shape and steric interactions.
  2. Increased Lipophilicity: Compounds with silicon may exhibit increased lipophilicity compared to their carbon analogs, potentially enhancing cell membrane permeability. See this case study for an illustration of this effect.
  3. Metabolic Stability: Silicon-containing compounds often show enhanced metabolic stability, which can be beneficial in extending the drug's effective half-life in the body.

Looking at a 3D model makes these differences obvious: the Si–C bonds in silafluofen are substantially longer than C–C bonds, which alters the shape of the molecule and the dihedral preferences of other bonds.

Applications of Silicon Bioisosteres

Silicon in Drug Candidates

Silicon has been used to replace carbon in various functional groups like alcohols, ketones, and amides. These modifications have resulted in compounds with altered pharmacokinetic and pharmacodynamic profiles, sometimes leading to improved therapeutic properties.

Case Studies

Several studies have demonstrated the potential of silicon bioisosteres. For instance, replacing a carbon atom with silicon in certain compounds has resulted in increased potency, selectivity, and metabolic stability. Here's some case studies:

There are lots more papers out there: see for instance this recent review.

Challenges in Silicon Bioisosterism

Despite its potential, the use of silicon as a bioisostere presents challenges:

  1. Synthetic Difficulty: Introducing silicon into organic molecules can be more challenging than traditional carbon-based synthesis. Nevertheless, more and more Si-containing building blocks are now available: see, for instance, this list from Enamine.
  2. Predicting Biological Effects: The effects of silicon substitution on biological systems are not always predictable, necessitating extensive testing.

Computational Chemistry and Silicon Bioisosteres

Advanced computational tools are crucial in predicting the effects of silicon substitution in drug molecules. Quantum chemistry, accessible through platforms like Rowan, can provide insights into the electronic structure, reactivity, and conformational changes resulting from silicon substitution. This predictive power is invaluable in the early stages of drug design. Computational studies also aid in understanding how silicon substitution impacts a drug's metabolism, helping to predict its pharmacokinetic behavior.

Conclusion

The use of silicon as a bioisostere for carbon in drug design is an area of growing interest. While challenges remain, the potential for developing novel therapeutics with improved properties is significant. Continued research, aided by computational chemistry tools like those offered by Rowan, is essential for advancing our understanding and application of silicon bioisosteres in medicinal chemistry.

For researchers interested in exploring the innovative realm of silicon bioisosteres, Rowan provides the computational platform necessary for such advanced studies. Begin your journey in pioneering drug design by creating an account at labs.rowansci.com/create-account.

Banner background image

What to Read Next

Starling: Macroscopic pKa, logD, and Blood–Brain-Barrier Permeability

Starling: Macroscopic pKa, logD, and Blood–Brain-Barrier Permeability

microscopic vs. macroscopic pKa; Uni-pKa and Starling; microstate ensembles; logD and Kp,uu predictions
Apr 25, 2025 · Corin Wagen
Physics-Informed Machine Learning Enables Rapid Macroscopic pKa Prediction

Physics-Informed Machine Learning Enables Rapid Macroscopic pKa Prediction

Here we introduce Starling, a physics-informed neural network based on the Uni-pKa architecture trained to predict per-microstate free energies and compute macroscopic pKa values via thermodynamic ensemble modeling.
Apr 25, 2025 · Corin C. Wagen
Predicting Infrared Spectra and Orb-v3

Predicting Infrared Spectra and Orb-v3

light and its manifold interactions with matter; why IR spectroscopy is useful; predicting IR spectra through Rowan; Orb-v3
Apr 17, 2025 · Ari Wagen, Corin Wagen, and Jonathon Vandezande
What's in a Name?

What's in a Name?

Why our company is named after a tree with no obvious connection to what we do.
Apr 11, 2025 · Corin Wagen and Ari Wagen
2D Scans, More Fukui Options, & Max Concurrency

2D Scans, More Fukui Options, & Max Concurrency

escape from scan-land; making More O'Ferrall–Jencks plots in Rowan; extending Fukui calculations to more levels of theory; managing large numbers of concurrent jobs
Apr 10, 2025 · Corin Wagen, Ari Wagen, Spencer Schneider, and Jonathon Vandezande
Can AI Can Accelerate Scientific Research?

Can AI Can Accelerate Scientific Research?

New research from Aiden Toner-Rodgers at MIT suggests the answer is yes, but with important caveats.
Apr 2, 2025 · Corin Wagen
"Glitch Mode" and Concerted Scans

"Glitch Mode" and Concerted Scans

the longue durée history of human communication; today only, a new modality in scientific visualization; concerted scans
Apr 1, 2025 · Corin Wagen and Ari Wagen
Rowan Research Spotlight: Ameer Nizami

Rowan Research Spotlight: Ameer Nizami

How Rowan helps Concordia researchers discover better batteries.
Mar 25, 2025 · Corin Wagen
Modeling Addition and Substitution Reactions

Modeling Addition and Substitution Reactions

Modeling addition and substition reaction thermodynamics for cyclohexane and benzene with diatomic bromine.
Mar 20, 2025 · Milca Pierre and Ari Wagen
Protein–Ligand Docking

Protein–Ligand Docking

critical contemplation of the merits and demerits of docking; unphysical poses and how to find them; machine learning offers a pragmatic solution; running docking on Rowan; future protein aspirations
Mar 14, 2025 · Ari Wagen, Corin Wagen, and Spencer Schneider