Silicon as a Bioisostere for Carbon in Drug Design

In the pursuit of novel therapeutic agents, medicinal chemists often employ the concept of bioisosterism – the replacement of one atom or group in a molecule with another atom or group having similar physical or chemical properties. Silicon, due to its chemical similarity to carbon, has emerged as a fascinating bioisostere in drug design.

Silicon in Medicinal Chemistry

Silicon, located directly below carbon in the periodic table, shares many of its chemical properties but also offers distinct advantages as a bioisostere:

  1. Larger Atomic Radius: Silicon has a larger atomic radius than carbon, which can influence molecular shape and steric interactions.
  2. Increased Lipophilicity: Compounds with silicon may exhibit increased lipophilicity compared to their carbon analogs, potentially enhancing cell membrane permeability. See this case study for an illustration of this effect.
  3. Metabolic Stability: Silicon-containing compounds often show enhanced metabolic stability, which can be beneficial in extending the drug's effective half-life in the body.

Looking at a 3D model makes these differences obvious: the Si–C bonds in silafluofen are substantially longer than C–C bonds, which alters the shape of the molecule and the dihedral preferences of other bonds.

Applications of Silicon Bioisosteres

Silicon in Drug Candidates

Silicon has been used to replace carbon in various functional groups like alcohols, ketones, and amides. These modifications have resulted in compounds with altered pharmacokinetic and pharmacodynamic profiles, sometimes leading to improved therapeutic properties.

Case Studies

Several studies have demonstrated the potential of silicon bioisosteres. For instance, replacing a carbon atom with silicon in certain compounds has resulted in increased potency, selectivity, and metabolic stability. Here's some case studies:

There are lots more papers out there: see for instance this recent review.

Challenges in Silicon Bioisosterism

Despite its potential, the use of silicon as a bioisostere presents challenges:

  1. Synthetic Difficulty: Introducing silicon into organic molecules can be more challenging than traditional carbon-based synthesis. Nevertheless, more and more Si-containing building blocks are now available: see, for instance, this list from Enamine.
  2. Predicting Biological Effects: The effects of silicon substitution on biological systems are not always predictable, necessitating extensive testing.

Computational Chemistry and Silicon Bioisosteres

Advanced computational tools are crucial in predicting the effects of silicon substitution in drug molecules. Quantum chemistry, accessible through platforms like Rowan, can provide insights into the electronic structure, reactivity, and conformational changes resulting from silicon substitution. This predictive power is invaluable in the early stages of drug design. Computational studies also aid in understanding how silicon substitution impacts a drug's metabolism, helping to predict its pharmacokinetic behavior.

Conclusion

The use of silicon as a bioisostere for carbon in drug design is an area of growing interest. While challenges remain, the potential for developing novel therapeutics with improved properties is significant. Continued research, aided by computational chemistry tools like those offered by Rowan, is essential for advancing our understanding and application of silicon bioisosteres in medicinal chemistry.

For researchers interested in exploring the innovative realm of silicon bioisosteres, Rowan provides the computational platform necessary for such advanced studies. Begin your journey in pioneering drug design by creating an account at labs.rowansci.com/create-account.

Banner background image

What to Read Next

g-xTB, Credit Usage, & More

g-xTB, Credit Usage, & More

the new g-xTB model from Grimme and co-workers; an easy visual overview of credit usage; better credit handling for organizations; bulk PDB download; a new collapsible JSON viewer
Jun 27, 2025 · Jonathon Vandezande, Ari Wagen, Spencer Schneider, and Corin Wagen
Representing Local Protein Environments With Atomistic Foundation Models

Representing Local Protein Environments With Atomistic Foundation Models

A guest post about how to use NNP embeddings for other prediction tasks.
Jun 20, 2025 · Meital Bojan and Sanketh Vedula
Co-Folding Updates

Co-Folding Updates

Boltz-2 FAQ and launch event recap; new visuals for co-folding workflows; new submission options; PDB bugfixes; new credit-management tools
Jun 12, 2025 · Ari Wagen, Spencer Schneider, and Corin Wagen
The Boltz-2 FAQ

The Boltz-2 FAQ

Questions and answers about the Boltz-2 biomolecular foundation model.
Jun 9, 2025 · Corin Wagen and Ari Wagen
Cleaning the Tap Room

Cleaning the Tap Room

beer and bezos; terms-of-service and privacy-policy updates; more deployment options; compliance requirements and country restrictions; a blog post about transition states
Jun 6, 2025 · Ari Wagen and Corin Wagen
BREAKING: Boltz-2 Now Live On Rowan

BREAKING: Boltz-2 Now Live On Rowan

This morning, a team of researchers from MIT and Recursion released Boltz-2, an open-source protein–ligand co-folding model.
Jun 6, 2025 · Corin Wagen, Spencer Schneider, and Ari Wagen
How to Run Boltz-2

How to Run Boltz-2

Step-by-step guides on how to run the Boltz-2 model locally and through Rowan's computational_chemistry platform.
Jun 6, 2025 · Corin Wagen
Guessing Transition States

Guessing Transition States

Methods for generating guess transition states for reaction modeling.
Jun 5, 2025 · Jonathon Vandezande
How to Run the OMol25/UMA Models

How to Run the OMol25/UMA Models

Step-by-step tutorials on how to run the OMol25/UMA models, both locally and through Rowan's cloud chemistry platform.
May 30, 2025 · Corin Wagen
The OMol25/UMA Release

The OMol25/UMA Release

the benchmarks; how to run the models; what it means for chemistry and Rowan
May 23, 2025 · Corin Wagen and Ari Wagen